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Abstract

A micromechanical approach is presented to estimate the overall linear elastic moduli of three phase composites

consisting of two phase coated spherical particles randomly dispersed in a homogeneous isotropic matrix. The theo-

retical method is based on Eshelby�s equivalent inclusion method and its recent extension by Shodja and Sarvestani

[J. Appl. Mech. 68 (2001) 3] to evaluate the local field variables in case of double (multi) inhomogeneities. Using

Tanaka–Mori theorem [J. Elasticity 2 (1972) 199] and a decomposition of Green�s function integral equation, the pair-

wise average phase values of stress and strain in two interacting coated particles are estimated. Following Ju and Chen

[Acta Mech. 103 (1994) 103; Acta Mech. 103 (1994) 123] the ensemble phase volume average of stress and strain fields

can be evaluated within a representative volume element containing a finite number of coated particles. Comparisons

with classical bounds are presented to illustrate the accuracy of the proposed method.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The present paper proposes a micromechanical method for the estimation of the global mechanical

properties of linear elastic composites with coated spherical microstructures. It is recognized in the liter-

ature that the mechanical performance of composite materials is significantly influenced by the presence of

interphase layers between constituents (filler and matrix). Hence, this effect was extensively studied over the

last decade and a number of micromechanical techniques have been developed. Many of these studies have

been devoted to the study of the variation of local field quantities within the constituents. Examples from

this category include the methods proposed by Walpole (1978), Mikata and Taya (1985a,b), Benveniste
et al. (1989) and Cherkaoui et al. (1994) and recently by Shodja and Sarvestani (2001). Likewise, vari-

ous techniques have been adopted to predict the effective properties of linear elastic composites in
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presence of interphase layers, e.g., Qiu and Weng (1991), Cherkaoui et al. (1995), Dunn and

Ledbetter (1995), El Mouden et al. (1998), Buryachenko and Rammerstorfer (2000) and Ozmusul and Picu

(2002a).

The effective mechanical properties of composite materials are defined as the relationship between en-
semble averages of the local stress and strain fields over a representative volume element (RVE) of the

heterogeneous body (homogenization). A number of micromechanical approaches were proposed in lite-

rature to describe how the mechanical properties and microgeometry of constituents affect the overall

behavior of composite materials. For comprehensive reviews the reader is referred to the monographs by

Beran (1967), Willis (1982), Mura (1987), Nemat-Nasser and Hori (1993) and Torquato (2001). Most of the

analytical homogenization procedures are based on Green�s function techniques and the Eshelby�s equiv-
alent inclusion method (1957, 1959, 1961). Adopting the terminology used by Mura (1987), in the present

study the inclusion and inhomogeneity are differentiated in the way that an inclusion is a finite domain with
a distribution of eigenstrain, its elastic moduli being the same with those of the matrix; whereas an in-

homogeneity is a subdomain with elastic moduli different than the matrix. According to Eshelby�s theory,
the eigenstrain and consequently strain and stress fields inside a single ellipsoidal inhomogeneity embedded

in an unbounded homogeneous isotropic matrix are uniform if the far field applied stress (strain) is uni-

form.

In the presence of an interlayer between the filler and the matrix, in general, strain and stress fields within

the inhomogeneity are not uniform. A number of researchers attempted to bypass the difficulty associated

with the evaluation of these non-uniform fields introducing the assumption of thin coating layer (Cherkaoui
et al., 1995; El Mouden et al., 1998; Buryachenko and Rammerstorfer, 2000). In this framework, the in-

terphase zone is assumed to have vanishing thickness and its stress and strain fields are obtained using Hill�s
interfacial operators (1972). This restrictive assumption is not always appropriate and is partly relaxed in

the present work. For instance, recent researches performed about the structure of polymer based nano-

composites show the thickness of the affected polymeric zone around the dispersed rigid nanofillers can be

comparable to the filler size. This can greatly enhance the volume fraction of interphase zone in the ma-

terial, which is believed to be the main reason for different macroscopic behavior of this kind of material

compared to the polymers reinforced with the micron-size particles (Ozmusul and Picu, 2002a,b; Picu et al.,
2003).

An alternative analytical approach to the estimation of macroscopic properties of linear elastic com-

posites with coated microcomponents is a generalization of the composite sphere or cylinder assemblage

models proposed by Hashin (1962), Hashin and Rosen (1964) and Christensen and Lo (1979) for self-

consistent or generalized self-consistent method in multiphase composites (Qiu and Weng, 1991; Jasiuk and

Kouider, 1993; Chu and Rokhlin, 1995). Benveniste et al. (1989) and Chen et al. (1990) presented another

solution to this problem, but based on the Mori and Tanaka (1973) scheme. The multi-inclusion model of

Hori and Nemat-Nasser (1993, 1994) for multiphase composites was also utilized as an adequate model for
functionally graded composites, e.g. Hori and Nemat-Nasser (1993), Dunn and Ledbetter (1995) and Li

(2000).

In this paper this problem is approached using a new method applicable to finite concentration of thickly

coated particulate systems. The interaction between the particle and interphase is evaluated by means of

Eshelby�s equivalent inclusion method (EIM) and Tanaka and Mori theorem (1972), following Shodja and

Sarvestani (2001). It is assumed that the randomly dispersed spherical fillers of similar size are covered by

homogeneous interphase layers with certain thickness and there are well bond interfaces between the

various constituents. It is also assumed that all statistical properties corresponding to any arbitrary rep-
resentative mesodomain of the composite body are statistically homogeneous. An ergodic random field is

called statistically homogeneous if multipoint statistical moments of any order are shift invariant functions

of spatial variables and, hence, the ensemble averaging could by replaced be volume averaging (Kr€ooner,
1972).



A.S. Sarvestani / International Journal of Solids and Structures 40 (2003) 7553–7566 7555
2. Statistical preliminaries

Consider N spherical fillers randomly dispersed in a statistically homogeneous mesodomain V . Let xi be

the position vector drawn to the center of each particle ðOiÞ in a Cartesian system with arbitrary origin. A
function uðx1; x2; . . . ; xN Þ of space coordinates x, and N position vectors xi may represent any statistical

quantity corresponding to these interacting inhomogeneities. For this random structure, it is possible to

define the probability density of the set of variables ðx1; x2; . . . ; xN Þ denoted by pðx1; x2; . . . ; xN Þ. This
function has the following properties (Mal and Bose, 1974):
pðx1; x2; . . . ; xN Þ ¼ pðxjÞpðx1; x2; . . . ;
0; . . . ; xN jxjÞ

¼ pðxjÞpðxijxjÞpðx1; x2; . . . ;
0; . . . ; 0; . . . ; xN jxi; xjÞ; ð1aÞ
pðxiÞ ¼ pðx1Þ; pðxijxjÞ ¼ pðx2jx1Þ ði 6¼ jÞ; ð1bÞ
where the vertical lines in the arguments denote the usual conditional probabilities. A prime in the first part
of (1a) means xj is not in the list, while two primes in the second part of (1a) means both xi and xj are

absent.

Since the composite is statistically homogeneous, the positions of a single sphere are equally probable

within V , and hence its distribution is uniform with density,
pðxiÞ ¼
1

V
; xi 2 V ;

¼ 0; xi 62 V :
ð2Þ
The distribution of spherical inhomogeneities relative to a given particle at xj is spherically symmetric and

hence pðxijxjÞ is a function of jxi � xjj alone,
pðxijxjÞ ¼
1

V
gðxi � xjÞ; xi 2 V ;

¼ 0; xi 62 V ;
ð3Þ
where gðxi � xjÞ is a decreasing function of jxi � xjj, called radial pair distribution function. Since the

particles cannot interpenetrate and are independent when they are infinitely apart,
gðxi � xjÞ ¼ 0; for jxi � xjj < 2a; ð4aÞ
gðxi � xjÞ ¼ 1; for jxi � xjj ! 1; ð4bÞ
where a is the radius of each spherical inhomogeneity. Different forms of the pair distribution function

satisfying conditions (4a) and (4b) have been suggested in the literature. In this paper, the following

function is used for gðxi � xjÞ:
gðxi � xjÞ ¼ 1þ 4

p
p

2
4 � 2 sin�1 r̂r

2

 !
� r̂r 1

 
� r̂r2

4

!1=2
3
5/; ð5Þ
where r̂r ¼ jxi � xjj=2a and / is the volume fraction (Hansen and McDonald, 1986).
We denote the conditional expectations of function u, when either Oi or Oi and Oj together are held fixed

as
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huii ¼
Z

::0:

Z
upðx1; x2; ::

0:; xN jxiÞdx1::
0:dxN ;

huiij ¼
Z

:0:0:

Z
upðx1; x2; :

0:0:; xN jxi; xjÞdx1:
0:0:dxN :

ð6Þ
3. Average fields within a pair of interacting coated spherical fillers

Consider a pair of identically coated spherical fillers located in an infinite isotropic matrix as depicted in

Fig. 1. Each coated particle is composed of a spherical filler surrounded by a homogeneous coating. The

filler and the coating have different elastic moduli and the ensemble is embedded in an infinite isotropic

matrix with yet another elasticity. Filler, coating and matrix are specified as Xi,Wi, and U domains (i ¼ 1, 2)

with their elastic moduli being C1, C2, and C respectively. Either of the two coated particles shown in Fig. 1

is referred as a double-inhomogeneity system. Note that Xi and Wi may be anisotropic in general. The

infinite elastic medium is subjected to uniform far field strain, e0ij (stress, r
0
ij).

According to the EIM, the double-inhomogeneities can be replaced with the equivalent double-inclu-

sions, as shown in Fig. 2. This equivalency holds for proper selection of homogenizing eigenstrain fields

e�ð1Þij ðxÞ and e�ð2Þij ðxÞ defined in the various domains as
Fig. 1. Two spherical coated fillers embedded in an infinite isotropic matrix.



Fig. 2. The pair of interacting double-inhomogeneities can be replaced with the equivalent double-inclusions with proper homogenizing

eigenstrains.
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e�ðmÞij ðxÞ ¼
g�ðmÞij ðxÞ x 2 Xm;

n�ðmÞij ðxÞ x 2 Wm

0 x 2 D;

8>><
>>: ; ðm ¼ 1; 2Þ: ð7Þ
Employing the EIM, the following consistency conditions are obtained (m ¼ 1, 2):
Cm
ijkl e0kl
�

þ edklðxÞ
�
¼ Cijkl e0kl

�
þ edklðxÞ � g�ðmÞkl ðxÞ

�
; x 2 Xm;

Cm
ijkl e0kl
�

þ edklðxÞ
�
¼ Cijkl e0kl

�
þ edklðxÞ � n�ðmÞkl ðxÞ

�
; x 2 Wm;

ð8Þ
where edijðxÞ denotes the disturbance in strain field.

The total disturbance in strain due to the presence of the eigenstrain field e�ðmÞij ðxÞ in the double-inclusion
Rm ¼ Wm [ Xm can be expressed as (Mura, 1987)
edijðxÞ ¼
Z
Rm

Cijklðx� x0Þe�ðmÞkl ðx0Þdx0; ðm ¼ 1; 2Þ; ð9Þ
where Cijklðx� x0Þ is a fourth order tensor defined by
Cijklðx� x0Þ ¼ �1
2
Crskl½Gir;sjðx� x0Þ þ Gjr;siðx� x0Þ�: ð10Þ
Gijðx� x0Þ is the elastic Green�s function for the infinite medium, given for the isotropic case in the form of

(Mura, 1987)
Gijðx� x0Þ ¼ 1

4pl
dij

jx� x0j �
1

16plð1� mÞ
o2

oxioxj
jx� x0j2; ð11Þ
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where l and m are the shear modulus and Poison�s ratio and dij is the Kronecker delta. Using the Eqs. (7)

and (9), the disturbance in strain reads
edðxÞ ¼
Z
X1

Cðx� x0Þg�ð1Þðx0Þdx0 þ
Z
W1

Cðx� x0Þn�ð1Þðx0Þdx0 þ
Z
X2

Cðx� x0Þg�ð2Þðx0Þdx0

þ
Z
W2

Cðx� x0Þn�ð2Þðx0Þdx0: ð12Þ
It is possible to decompose the second and fourth integrals in (12) as
Z
Wm

Cðx� x0Þn�ðmÞðx0Þdx0 ¼
Z
Rm

Cðx� x0Þn�ðmÞðx0Þdx0 �
Z
Xm

Cðx� x0Þn�ðmÞðx0Þdx0 ðm ¼ 1; 2Þ: ð13Þ
This makes possible expressing all terms in (12) as integrals over simply connected spherical domains.

Shodja and Sarvestani (2001) used this decomposition for the evaluation of local stress and strain fields in a

general double-inhomogeneity system. Here the objective is to estimate the overall macroscopic behavior

and hence we look for volume averages of field quantities. Taking the volume average of (12) over R1 and

X1, gives
edR1
¼ f edX1

þ ð1� f ÞedW1

¼ 1

R1

Z
R1

Z
X1

Cðx� x0Þg�ð1Þðx0Þdx0 dxþ 1

R1

Z
R1

Z
R1

Cðx� x0Þn�ð1Þðx0Þdx0 dx

� 1

R1

Z
R1

Z
X1

Cðx� x0Þn�ð1Þðx0Þdx0 dxþ 1

R1

Z
R1

Z
X2

Cðx� x0Þg�ð2Þðx0Þdx0 dx

þ 1

R1

Z
R1

Z
W2

Cðx� x0Þn�ð2Þðx0Þdx0 dx; ð14aÞ
edX1
ðxÞ ¼ 1

X1

Z
X1

Z
X1

Cðx� x0Þg�ð1Þðx0Þdx0 dxþ 1

X1

Z
X1

Z
R1

Cðx� x0Þn�ð1Þðx0Þdx0 dx

� 1

X1

Z
X1

Z
X1

Cðx� x0Þn�ð1Þðx0Þdx0 dxþ 1

X1

Z
X1

Z
X2

Cðx� x0Þg�ð2Þðx0Þdx0 dx

þ 1

X1

Z
X1

Z
W2

Cðx� x0Þn�ð2Þðx0Þdx0 dx; ð14bÞ
where f ¼ X=R. The bar above any quantity represents the volume average over the region shown in the

subscript. For example, the volume average of quantity vðxÞ over region a is va ¼ 1=a
R
a vðxÞdx.

Using Tanaka and Mori theorem (1972) and the fact that Cðx� x0Þ ¼ Cðx0 � xÞ, Eq. (14a) can be written
as
f edX1
þ ð1� f ÞedW1

¼ SR1 f g�ð1ÞX1

�
þ ð1� f Þn�ð1ÞW1

�
þ 1

R1

Z
R1

Z
X2

Cðx� x0Þg�ð2Þðx0Þdx0 dx

þ 1

R1

Z
R1

Z
W2

Cðx� x0Þn�ð2Þðx0Þdx0 dx; ð15aÞ
where Sa is the well-known Eshelby tensor for interior points of region a. Also application of Hori and

Nemat-Nasser�s estimation (1993) of the average perturbed strain in a general double-inhomogeneity to
(14b) yields
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edX1
¼ SX1g

�ð1Þ
X1

þ SR1
�

� SX1
�
n
�ð1Þ
W1

þ 1

X1

Z
X1

Z
X2

Cðx� x0Þg�ð2Þðx0Þdx0 dx

þ 1

X1

Z
X1

Z
W2

Cðx� x0Þn�ð2Þðx0Þdx0 dx: ð15bÞ
Since X1 and R1 are both spherical inclusions, SR1 ¼ SX1 ¼ S. As an approximation, the eigenstrain fields

g�ð2Þ and n�ð2Þ in the integrands in (15a) and (15b) are replaced by their mean values over the corresponding

regions X2 and W2. This assumption is equivalent to keeping the first term and neglecting the higher order

moments resulted from a Taylor expansion of Cðx� x0Þ about x (See Ju and Chen, 1994b). Obviously the

validity of this assumption decreases as the inclusions concentration and the thickness of coating layers

increase. Nevertheless it will be shown in Section 6 that the results based on this hypothesis for the overall
shear moduli even for thickly coated particle systems lie between the relatively narrow bounds proposed by

Qiu and Weng (1991) and for overall bulk moduli coincide on their exact evaluation. For the uniform far

field stimuli the volume averages of corresponding strains and eigenstrains are equivalent in both double

inclusions. Therefore, by means of the decomposition (13), Eqs. (15a) and (15b) can be written as
f edX þ ð1� f ÞedW ¼ Sðf g�X þ ð1� f Þn�WÞ þ TðR1;X2Þðg�X � n
�
WÞ þ TðR1;R2Þg�X; ð16aÞ

edXðxÞ ¼ Sg�X þ TðX1;X2Þg�X þ ðTðX1;R2Þ � TðX1;X2ÞÞn
�
W; ð16bÞ
where Tða; bÞ ¼ 1
a

R
a

R
b Cðx� x0Þdx0 dx is a fourth order tensor accounting for the interaction of inclusion a

on b belonging to different double-inclusions. The explicit forms of these interaction tensors for the case of

two spherical inclusions embedded in an isotropic infinite medium are obtained by Berveiller et al. (1987).

For completeness, their results are summarized in Appendix A.

Eqs. (16a) and (16b) provide two sets of linear relations between the unknown average strain fields edX
and edW, and the unknown average eigenstrain fields g�X and n

�
W. Taking volume average of the equivalency

conditions (8) over regions X and W gives
C1ðe0 þ edXÞ ¼ Cðe0 þ edX � g�XÞ;
C2ðe0 þ edWÞ ¼ Cðe0 þ edW � n

�
WÞ:

ð17Þ
Average consistency conditions (17) along with relations (16a) and (16b) form a set of algebraic equations,

which provide the unknown mean eigenstrain fields g�X and n
�
W.
4. Average fields for a random distribution of coated fillers

In order to evaluate the ensemble volume average of quantity uðx1; x2; . . . ; xN Þ within a composite

containing a statistically homogeneous dispersion of identical particles, it is sufficient to compute the av-

erage of that quantity over a representative particle in the system. Let us consider the ith particle as the

representative one. The ensemble volume average of quantity u results as (Eq. (6))
huii ¼
Z

::0:

Z
upðx1; x2; ::

0:; xN jxiÞds1::0:dsN : ð18Þ
If, as an approximation, the higher order conditional probability densities appearing in (1a) are ignored,

then we obtain
huii ¼
Z Z Z

V�E
uðxi; xÞpðxjxiÞdx; ð19Þ
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where E is an excluded volume around the representative particle in the mesodomain V , by condition (3).

According to Eq. (19), in order to obtain the ensemble average of u within the context of pair-wise in-

clusion interaction, one has to integrate uðxi;xÞ over all possible locations x for given xi. This binary in-

clusion approximation was first used by Ju and coauthors (Ju and Chen, 1994a,b; Ju and Zhang, 1998) to
obtain the overall mechanical behavior of a composite system.

Let us assume a statistically homogeneous composite medium that contains randomly dispersed coated

spherical particles as described in the previous section. For a RVE V , we defined
g�dX ¼ g�X � g�0X ; n�dW ¼ n
�
W � n

�0
W ; ð20Þ
where g�0X and n
�0
W are the mean eigenstrain introduced in the core and coating layer of a single double-

inclusion system located in an infinite isotropic matrix.

For any arbitrary point x in V ,
g�dX ðxi; xÞ ¼
XN
j¼1

f1� #ðx; xjÞgg�dX ðxi; xjÞ;

n�dW ðxi; xÞ ¼
XN
j¼1

f1� #ðx; xjÞgn�dW ðxi; xjÞ;
ð21Þ
where #ðx; xjÞ is the window function defined by
#ðx;xjÞ ¼ 0; if x lies within the jth coated sphere;

¼ 1; if x lies outside the jth coated sphere:
Substitution of (3) and (21) into (19) leads to the ensemble volume average of quantities g�dX and n�dW as
g�dX
� �

¼ N
V

Z Z Z
V�E

g�dX ðxi; xÞgðxi � xÞdx;

n�dW
� �

¼ N
V

Z Z Z
V�E

n�dW ðxi; xÞgðxi � xÞdx:
ð22Þ
E here is the excluded volume around each coated particle within a sphere of radius 2RR, where RR is the
radius of the spherical domain R ¼ X [W. Finally owing to relation (20), the ensemble average of eigen-

strain fields becomes
g�X
� �

¼ g�0X þ g�dX
� �

; n
�
W

D E
¼ n

�0
W þ n�dW

� �
: ð23Þ
5. Overall elastic moduli

The effective stiffness tensor C of a composite material, is a constant relating the ensemble volume av-

erages of strain and stress over the representative mesodomain of the body,
hri ¼ Chei: ð24Þ

In accordance with Ju and Chen (1994a,b) and dropping the angular brackets denoting the ensemble av-

erage operators,
r ¼ Cðe� /e�Þ ¼ Ce;

e ¼ e0 þ /se�;
ð25Þ
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where e� ¼ f g�X þ ð1� f Þn�W and / is the volume fraction of double-inclusions (particles with coating) in the

medium. s in (25) denotes the ‘‘depolarization factor’’ tensor at the two-point level (Sen and Torquato,

1989). Here, since all coated inclusions are spherical, s is equivalent to Eshelby tensor for internal points of

a spherical inclusion (s ¼ S).
The composites with statistically homogeneous distribution of random structure, exhibit isotropic be-

havior in the macroscopic sense. Here the bulk and shear modulus are selected as the independent material

properties of the medium. To find the overall bulk modulus by (25), a far field hydrostatic loading

e011 ¼ e022 ¼ e033 is applied on the system. Substitution of the ensemble averages of eigenstrian fields from (23)

into (25) leads to the following relations for the macroscopic bulk modulus j of the system
j ¼
j e11 � c

f e
�
11

� �
e11

; ð26Þ
where
e11 ¼ e011 þ c g�X11

�
þ 1� f

f
n
�
W11

�
ðS1111 þ S1122 þ S1133Þ: ð27Þ
c shows the volume fraction of the core spherical particle (i.e. c ¼ f/). Similarly, for determination of the

shear modulus l, applying a simple shear strain, e012, gives
l ¼
l e12 � c

f e
�
12

� �
e12

; ð28Þ
where
e12 ¼ e012 þ 2c g�X12

�
þ 1� f

f
n
�
W12

�
S1212: ð29Þ
6. Numerical study

The accuracy of the method proposed here is examined by comparing its predictions of the overall elastic

moduli with those predicted by other methods proposed in the literature. The work of Qiu and Weng (1991)

on thickly coated particulate composites, and that of Hori and Nemat-Nasser (1993, 1994) on the multi-

inclusion model are taken as reference. Qiu and Weng (1991) derived an exact solution for the effective bulk

modulus of the thickly coated concentric sphere assemblage. They obtained relatively tight bounds,

compared to the Hashin and Shtrikman (1963) and Walpole (1969) bounds, for the overall shear modulus

of the system. The multi-inclusion model of Hori and Nemat-Nasser (1993) may be reduced to either the

Mori–Tanaka or self-consistent method. In the present work, the Mori–Tanaka scheme is used which
assumes that the elasticity of the infinite medium is set equal to that of matrix material.

In the first example two case studies are considered. In the first one, the shear modulus of fiber, coating

and matrix are assumed to be 25, 5 and 1 GPa (Fig. 3), while in the second they are 1, 5 and 25 GPa,

respectively (Fig. 4). In both cases the filler volume is taken to be half that of the coating volume and the

Poisson�s ratio is set to 0.3 in all phases. The estimation of the macroscopic bulk modulus vs. the volume

fraction of core spherical particle (c) is shown in Figs. 3(a) and 4(a). The agreement between the results of

the present study and that of the multi-inclusion method with the exact results of Qiu and Weng (1991) is

good. Note that when c is equal to 0.3 the system is almost packed. The comparison of the predicted overall
shear modulus with Qiu and Weng�s bounds is shown in Figs. 3(b) and 4(b). The results of the present study

are within the bounds whereas the prediction of the multi-inclusion method falls beyond. For generating
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Fig. 3. Comparison between the results of the present method and the prediction of the multi-inclusion model (Hori and Nemat-

Nasser, 1993; Qiu and Weng, 1991) for (a) overall bulk modulus and (b) overall shear modulus. The shear modulus of filler, coating

and matrix is 25, 5 and 1 GPa, respectively. c is the volume fraction of core spherical particles.

0

10

20

30

40

50

60

0 0.1 0. .3
c

B
u

lk
 M

o
d

u
lu

s 
(G

P
a)

Present Method

Multi-inclusion Model

Qiu-Weng (1991)

(a)

0

5

10

15

20

25

30

0 0.1 0. .3
c

S
h

ea
r 

M
o

d
u

lu
s 

(G
P

a)

Present Method

Multi-inclusion Model

Lower Bound (Qiu-Weng,1991)

Upper Bound (Qiu-Weng,1991)

(b) 

Fig. 4. Comparison between the results of the present method and the prediction of the multi-inclusion model (Hori and Nemat-

Nasser, 1993; Qiu and Weng, 1991) for (a) overall bulk modulus and (b) overall shear modulus. The shear modulus of filler, coating

and matrix is 1, 5 and 25 GPa, respectively. c is the volume fraction of core spherical particles.
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the numerical results of the method presented in this paper in all of discussed examples in this section, the

pair distribution function of Eq. (5) has been used.

In another example, the effect of the coating stiffness on the overall mechanical properties of thin coated

composites is studied. Fig. 5(a) and (b) show this effect on the overall bulk modulus and shear modulus vs.

filler volume fraction for different coating layer stiffness. The shear modulus of filler and matrix is assumed
to be 20 and 1 GPa, respectively. In the figures lc=lm represents the shear modulus ratio of the coating to

the matrix. The calculation is performed for three cases lc=lm ¼ 1, 5, and 10, where the first case corre-

sponds to no coating layer. Here the normalized thickness of the coating is tc=rf ¼ 0:1, where tc and rf
represent the thickness of the coating and radius of the fillers, respectively. It is seen that that the effective

properties are sensitive to the stiffness of the coating, especially at high volume fractions.

The last example addresses the effect of the coating thickness (Fig. 6(a, b)). The shear modulus of filler,

coating and matrix is chosen to be 20, 10 and 1 GPa, respectively. Numerical results are shown for three



Fig. 5. Effect of the coating stiffness on (a) overall bulk modulus and (b) overall shear modulus of the composite material. c is the

volume fraction of core spherical particles. The normalized thickness of the coating is tc=rf ¼ 0:1.
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Fig. 6. Effect of the coating thickness on (a) overall bulk modulus and (b) overall shear modulus of the composite material. c is the

volume fraction of core spherical particles. lf=lc=lm ¼ 20=10=1 GPa.
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normalized coating thicknesses, tc=rf ¼ 0:1, 0.2, and 0.4. It appears that the coating thickness has also a

strong effect on the macroscopic properties of the composite material.
7. Conclusion

In this paper a method for the evaluation of the effective elastic moduli of composites with random

spherical coated fillers is presented. It is shown that Eshelby�s equivalent inclusion method is still applicable

in this case for the prediction of the macroscopic elastic properties. The numerical study illustrated that
even at high volume fraction of thickly coated composites, the results of the present method almost coincide

with Qiu and Weng�s (1991) closed form solution for the overall bulk modulus and lies between their

proposed bounds for the overall shear modulus. Some other numerical studies are performed to show the

effect of coating stiffness and thickness.
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Appendix A

The explicit form of the interaction tensor Tða; bÞ is presented here. Let a and b be the volume of two

spheres, m, the Poisson ratio, and l, the shear modulus of the isotropic matrix. The radius of spherical fillers

a and b are denoted by a and b, and R shows the distance between their centers. The non-zero components

of Tijklða; bÞ are

Tijklða; bÞ ¼ Qijmnða; bÞCmnkl;
where C is the stiffness of the matrix and
Q1111ða; bÞ ¼ Q2222ða; bÞ ¼
b

16pR2

1

lð1� mÞ 1

�
� 4mþ 5

9
q2

�
;

Q1122ða; bÞ ¼ Q2211ða; bÞ ¼
b

16pR2

1

lð1� mÞ

�
� 1þ 3

5
q2

�
;

Q1133ða; bÞ ¼ Q2233ða; bÞ ¼ Q3311ða; bÞ ¼ Q3322ða; bÞ ¼
b

16pR2

1

lð1� mÞ 2

�
� 12

5
q2

�
;

Q1212ða; bÞ ¼ Q1221ða; bÞ ¼ Q2121ða; bÞ ¼ Q2112ða; bÞ ¼
b

16pR2

1

lð1� mÞ 1

�
� 2mþ 3

5
q2

�
;

Q1313ða; bÞ ¼ Q1331ða; bÞ ¼ Q3113ða; bÞ ¼ Q3131ða; bÞ ¼
b

16pR2

1

lð1� mÞ 1

�
þ 4m� 12

5
q2

�
;

Q2323ða; bÞ ¼ Q2332ða; bÞ ¼ Q3223ða; bÞ ¼ Q3232ða; bÞ ¼
b

16pR2

1

lð1� mÞ 1

�
þ m� 12

5
q2

�
;

Q3333ða; bÞ ¼
b

16pR2

1

lð1� mÞ

�
� 8þ 8mþ 24

5
q2

�
;

and q2 ¼ a2 þ b2=R2. Note that Tijklða; bÞ ¼ 0 when three indices are different, or when three indices are

equal, but different from the fourth.
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